Mechanism of Electron Transfer Oxidation of 4-Substituted 1-Benzyl-1,4-dihydronicotinamides

Naoki Takada, Shinobu Itoh, and Shunichi Fukuzumi* Department of Applied Chemistry Faculty of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565

(Received September 5, 1996)

Electron transfer oxidation of variously 4-substituted 1-benzyl-1,4-dihydronicotinamides (RBNAH) by [Fe(phen)₃]³⁺ (phen = 1,10-phenanthroline) results in formation of RBNAH*+, followed by cleavage of the C(4)-H or C(4)-C bond of RBNAH*+ depending on the substituent R. In particular, the C(4)-C bond cleavage of *t*-BuBNAH*+ yields exclusively BNA+ and *tert*-butyl radical (*t*-Bu*) which is detected by applying a rapid mixing flow electron spin resonance (ESR) technique.

It has been well established that electron transfer oxidation of an NADH model compound, 1-benzyl-1,4-dihydronicotinamide (BNAH) by various one-electron oxidants results in formation of BNAH*+, followed by deprotonation at the 4-position of BNAH*+ to yield BNA* which is further oxidized to BNA+.1-3 Recently we have reported that cleavage of the C(9)-C or C(9)-H bond of radical cations of NADH analogs, 9-substituted 10methyl-9,10-dihydroacridines (AcrHR) occurs in the electron transfer oxidation of AcrHR by Fe³⁺ complexes depending on the substituent R.4 Savéant et al. have recently reported that the electrochemical oxidation of 4-tert-butylated BNAH (t-BuBNAH) also results in the C(4)-C bond cleavage rather than deprotonation of t-BuBNAH*+.5 However, there are two possible modes of the carbon-carbon bond cleavage in such reactions to generate (a) t-Bu[•] and BNA⁺ or (b) t-Bu⁺ and BNA[•] as shown in Scheme 1. It seems difficult to distinguish the two pathways, since t-Bu* and BNA• are further oxidized to *t*-Bu+ and BNA+, yielding the same products irrespective of the cleavage mode.^{6,7} We report herein the mechanism of the electron transfer oxidation of a series of 4alkylated BNAH (RBNAH, R = Et, *i*-Pr, and *t*-Bu) to clarify the cleavage mode of the C(4)-C bond, showing that the selectivity of the C(4)-H or C(4)-C bond of RBNAH*+ varies depending on R. The formation of t-Bu[•] (pathway (a) in Scheme 1) rather than t-Bu⁺ has successfully been shown by the trap of t-Bu[•] with oxygen to produce t-BuOO which can be detected by ESR.

The one-electron oxidation potentials $(E^0_{ox} vs. SCE)$ of RBNAH (R = Et, *i*-Pr, and *t*-Bu)⁸ have been determined as 0.70-0.72 V by applying a second harmonic ac voltammetry.⁹ These oxidation potentials are smaller than the one-electron reduction potential of $[Fe(phen)_3]^{3+}$ as 1.07 V (vs. SCE).¹⁰ Thus, electron transfer from RBNAH to $[Fe(phen)_3]^{3+}$ occurs rapidly in MeCN at room temperature as indicated by the instant increase

Scheme 1.

in absorption spectrum of $[Fe(phen)_3]^{2+}$ ($\lambda_{max} = 508$ nm). The electron transfer oxidation of RBNAH may result in cleavage of either the C(4)-C or C(4)-H bond of RBNAH*+ to yield the two different types of products as shown in Scheme 2, where there are two possible modes of cleavage.

The product yields of BNA+ vs RBNA+ obtained from 1 H NMR are listed in Table 1. The ratio of BNA+ to RBNA+ varies depending on the substituent R. In the case of t-BuBNAH, the C(4)-C bond of t-BuBNAH is cleaved exclusively to yield BNA+ whereas the C(4)-H bond of EtBNAH is cleaved mainly to yield EtBNA+. In the case of i-PrBNAH, both the C-H and C-C bonds are cleaved to generate the two different types of products.

The products derived from the alkyl fragmentation are found to be different between the absence and presence of O_2 in the case of t-BuBNAH (Table 2). In the absence of O_2 , N-tert-butylacetamide (t-BuNHCOMe) was obtained as the main product. This may be attributed to the reaction of t-Bu+ derived from the C-C bond cleavage with the solvent (MeCN) and residual water. On the contrary, the yield of t-t-buthanol (t-BuOH)

$$\begin{array}{c} H^{+} & -e^{-} & H^{+} \\ RBNA & (RBNA^{+}) \\ RBNA & (RBNA^{+}) \\ RBNA & RBNA &$$

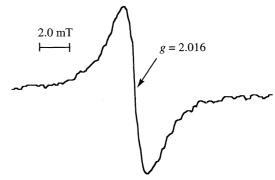
Scheme 2.

Table 1. The product yields of BNA+ vs. RBNA+ for the electron transfer oxidation of RBNAH (5.0 x 10^{-3} mol dm⁻³) by [Fe(phen)₃]³⁺ (5.0 x 10^{-2} mol dm⁻³) in deaerated MeCN

_	Yield / %		
R	BNA ⁺	RBNA ⁺	
<i>tert</i> -butyl	100	0	
isopropyl	92	8	
ethyl	9	91	

1104 Chemistry Letters 1996

Table 2.	Product yields of the electron transfer oxidation of	
t-BuBNA	H $(5.0 \times 10^{-3} \text{ mol dm}^{-3})$ with $[\text{Fe}(\text{phen})_3]^{3+}$ in MeCN	Į


	[Fe(phen) ₃] ³⁺	/ Yield	Yield ^a / %	
	mol dm ⁻³	t-BuNHCOMe	t-BuOH	
in the absence of O ₂	1.0 x 10 ⁻²	69	29	
	2.5 x 10 ⁻²	72	22	
in the presence of O ₂	1.0 x 10 ⁻²	39	52	
	2.5 x 10 ⁻²	48	48	

^a 2-Methylpropene is also formed as a minor product.

becomes larger than *t*-BuNHCOMe in the presence of O_2 (Table 2). The stoichiometric ratio of *t*-BuBNAH to $[Fe(phen)_3]^{3+}$ (1.0 x 10⁻⁴ mol dm⁻³) was determined from the increase in absorption spectrum of $[Fe(phen)_3]^{2+}$ in both the absence and presence of O_2 . In the absence of O_2 , the stoichiometric ratio of *t*-BuBNAH to $[Fe(phen)_3]^{3+}$ is 1:2 whereas it is 1:1 in the presence of O_2 . This means that no further oxidation of the cleaved product by $[Fe(phen)_3]^{3+}$ occurs in the presence of O_2 although it is further oxidized in the absence of O_2 .

The product analyses and stoichiometries described above suggest that the C-C bond cleavage of RBNAH*+ results in formation of (a) R* and BNA+ rather than (b) R+ and BNA* in Scheme 2. In the absence of O2, t-Bu* formed initially in the C-C bond cleavage of t-BuBNAH*+ will be further oxidized by $[Fe(phen)_3]^{3+}$ to yield t-Bu+ which then reacts with MeCN and/or residual water to yield t-BuNHCOMe or t-BuOH, or deprotonates to yield 2-methylpropene (Table 2), resulting in the 1:2 stoichiometry. In the presence of O₂, however, t-Bu• will be trapped efficiently by O₂ to yield tert-butylperoxyl radical (t-BuOO*) which is not further oxidized by [Fe(phen)₃]³⁺ and it may be converted to the final product, t-BuOH by the radical reactions. 12 This is consistent with the 1:1 stoichiometry of t-BuBNAH to [Fe(phen)₃]³⁺ in the presence of O₂. When the large concentration of $[Fe(phen)_3]^{3+}$ (1.0 x 10⁻² or 2.5 x 10⁻² mol dm-3) is employed (Table 2) as compared to that in determination of the stoichiometry (1.0 x 10⁻⁴ mol dm⁻³), the further oxidation of t-Bu* by [Fe(phen)₃]³⁺ competes with the trap with O₂ leading to the formation of t-BuNHCOMe even in the presence of O₂ although the yield becomes smaller (Table 2).

The formation of *t*-BuOO• (g = 2.016) upon the oxidation of *t*-BuBNAH (5.0 x 10⁻⁴ mol dm⁻³) by [Fe(phen)₃]³⁺ (5.0 x 10⁻⁴ mol dm⁻³) in aerated MeCN is confirmed by the ESR spectrum with a rapid mixing flow apparatus as shown in Figure 1. If the cleavage of the C(4)-C bond of *t*-BuBNAH•+ results in formation of *t*-BuBNA• and H+, electron transfer from *t*-BuBNA• to O₂ in the presence of H+ would occur to produce HO2•. However, no ESR spectrum other than *t*-BuOO• has been observed in aerated MeCN. Thus, it can be concluded that RBNAH•+ formed in the electron transfer oxidation of RBNAH undergoes the C(4)-H or C(4)-C bond cleavage depending on the substituent R and that the

Figure 1. Transient ESR spectrum observed in the electron transfer oxidation of t-BuBNAH (5.0 x 10^{-4} mol dm⁻³) by $[Fe(phen)_3]^{3+}$ (5.0 x 10^{-4} mol dm⁻³) in aerated MeCN.

cleavage of the C(4)-C bond of *t*-BuBNAH*+ results in formation of *t*-Bu* and BNA+ rather than *t*-Bu+ and BNA*.

This work was partially supported by Grant-in-Aids for Scientific Research from the Ministry of Education, Science, Sports and Culture.

References and Notes

- S. Fukuzumi and T. Tanaka, in "Photoinduced Electron Transfer," ed by M. A. Fox and M. Chanon, Elsevier, Amsterdam (1988), Part C, pp. 578-636; S. Fukuzumi, in "Advanced in Electron Transfer Chemistry," ed by P. S. Mariano, JAI Press, Greenwich (1992), Vol. 2, pp. 67-175.
- T. Okamoto, A. Ohno, and S. Oka, J. Chem. Soc., Chem. Commun., 1977, 181;
 S. Fukuzumi, Y. Kondo, and T. Tanaka, J. Chem. Soc., Perkin Trans. 2, 1984, 673;
 M. F. Powell, J. C. Wu, and T. C. Bruice, J. Am. Chem. Soc., 106, 3850 (1984);
 A. Ohno, M. Ogawa, Y. Mikata, and M. Goto, Bull. Chem. Soc. Jpn., 63, 813 (1990).
- 3 S. Fukuzumi, S. Koumitsu, K. Hironaka, and T. Tanaka, J. Am. Chem. Soc., 109, 305 (1987).
- 4 S. Fukuzumi, Y. Tokuda, T. Okamoto, and J. Otera, *J. Am. Chem. Soc.*, **115**, 8960 (1993).
- 5 A. Anne, J. Moiroux, and J.-M. Savéant, J. Am. Chem. Soc., 115, 10224 (1993); A. Anne, S. Fraoua, J. Moiroux, and J.-M. Savéant, J. Am. Chem. Soc., 118, 3938 (1996).
- 6 The one-electron oxidation potentials (vs. SCE) of t-Bu $^{\bullet}$ (0.09 V)⁷ and BNA $^{\bullet}$ (-1.08 V)³ are significantly lower than the one-electron oxidation potential of BNAH (0.57 V)³.
- 7 D. D. M. Wayner, D. J. McPhee, and D. Griller, J. Am. Chem. Soc., 110, 132 (1988).
- 8 For the preparation of RBNAH, see: A. Anne, *Heterocycles*, 34, 2331 (1992).
- 9 For the determination of E⁰_{ox} by a second harmonic ac voltammetry, see: M. Patz, H. Mayr, J. Maruta, and S. Fukuzumi, Angew. Chem., Int. Ed. Engl., 34, 1225 (1995).
- 10 S. Fukuzumi, N. Nishizawa, and T. Tanaka, *Bull. Chem. Soc. Jpn.*, **55**, 3482 (1982).